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ABSTRACT

As students taking Statics and Mechanics of Materials I,
the professor instructed the class to design a balsa wood
bridge capable of carrying a load of 1001 [N] and have
a minimum performance index (PI) of 30 [1/$]. The team
researched different truss designs including the Warren and
the Parker. Different components were inspired by the Warren
and Parker truss to make a final design. To calculate the
internal reactionary forces acting within each member, the
team used the method of joints and utilized symbolics in
Matlab to solve the system of equations. To verify the force
calculations the method of sections was employed. A number
of different iterations of the bridge were tested and the truss
design was adjusted in the second iteration through optimizing
the angles between members using Matlab. Matlab was used
to determine the number of cross beams needed in the third
iteration. When testing different iterations of the design, the
bridge broke multiple times due to shearing stress on the cross
beams and once at a joint. The final bridge held a total load
of 1760.16 [N] with a PI of 47.6 [1/$] and cost 16.26 [$].

NOMENCLATURE

A Cross-sectional area [m2]
Fi Internal Reactionary Force of a Member [N] (Sec-

tions)
h Height [mm]
L Load [N]
PI Performance Index [1/$]
Ri Internal Reactionary Force of a Member [N] (Joints)
t Thickness of Member [m]
Z Force Per Cross Beam [N]
Special Characters
∠ Angle [-]
A Line [-]
σ Normal Stress [MPa]
σb Bearing Stress [MPa]∑

Summation [-]
τ Shear Stress [MPA]
τing Shearing Stress [MPa]
θ Theta [degrees]
△ Triangle [-]

*All correspondence regarding the paper should be addressed to Nada
Elgendy

A Cross-sectional area [m2]
d diameter of bolt 4.1656 [mm]

INTRODUCTION

Bridges have been an integral part of civilizations for
centuries. Based on an article published by Britannica, the
first evidence of bridges being built dates back to 2500 BC
(Britannica, 2023). As engineering students, understanding
how trusses work is important because of how fundamental
these structures are to daily life-especially in a city such as
Pittsburgh. Historically the Greeks used trusses in roofing,
and construction purposes in the Middle Ages (Britannica,
2023). Today trusses are used extensively in a broad range
of buildings and bridges. (Steel Construction). Some of the
benefits of trusses include the fact that they can span long
distances, are lightweight, have reduced deflection, and can
support large loads (Steel Construction). Since trusses dis-
tribute forces amongst it members, they can be analyzed and
studied to determine an optimal bridge design.

While some of the first bridges included arches and sus-
pension, the team’s task was to design a bridge supported
by trusses. According to Britannica, trusses are a “Structural
member usually fabricated from straight pieces of metal or
timber to form a series of triangles lying in a single plane.”
Similar to these first bridges, this project requires the team to
engineer a bridge made of balsa wood.

The team decided on designing a bridge inspired by the
Warren and the Parker truss. The Warren truss is known
for its geometric properties of repeated equilateral triangles,
which influenced the team to incorporate two equilateral
triangles on both sides of the truss. In addition, the team used
the angled top beams from the Parker in the truss design. The
bridge must hold 1001 [N] and have a performance index
(PI) of at least 30 [1/$].

METHODOLOGY

To calculate the forces and stresses the bridge experiences,
the method of joints and the method of sections were used.
The method of joints was used to calculate the internal
reactionary forces the members experience within the bridge.
The equations derived from the method of joints were solved
using Matlab symbolics. The method of joints involves
analyzing each joint of the truss and calculating the unknown
internal reactionary forces of each member. First a global free



body diagram was constructed in order to begin finding the
reactionary forces. Then equilibrium equations were created
for summation of moments and forces going in the x and y
directions. To verify the reactionary forces found from the
method of joints, the team used the method of sections. The
method of sections involves treating the truss as a rigid body.
This method uses the same general free body diagram as the
method joints. The general free body diagram was used to
write the equilibrium equations in the x and y direction and
for the moment. To find the forces with this method, a cut was
made through each member. The equilibrium equations from
the general free body diagram are then used to calculate each
reactionary force. It is important to note there are two types
of reactionary forces: tension and compression. These are
both present in the method of joints and method of sections.
Stress results from the force per area, which were calculated
using the reactionary forces found from the method of joints.

Angles

Fig. 1. Global free body diagram of truss design

All of the angles found were in reference to figure 1.
The first angle, θ1, is on the bottom right of △ABH. That
triangle was made to be equilateral because it was inspired
by the Warren truss. θ1 was found by bisecting ∠ABH to
turn it into a right triangle. The hypotenuse of the right
triangle, BH, is equivalent to the height of the bridge as
△BCH is isosceles. Since the angle value was found using
inverse tangent, the length opposite from the angle and the
length of the hypotenuse were needed. The length opposite
from the angle-the length of the bisector-was found using the
Pythagorean theorem, a2 + b2 = c2. The adjacent side was
then 1

2AH or 63.5 [mm]. This means θ1 was found to be

arctan(
h2 − 63.52

63.5
) (1)

The second angle, θ2, is the one on the bottom right of
△CHI. CH is perpendicular to the base of the bridge, therefore

△CHI is a right triangle. Additionally, CH is the height of the
bridge, so the angle of θ2 is found simply with the equation

arctan(
h

3
) (2)

The third angle was initially defined but was unused,
therefore it is not featured in figure 1.

The fourth angle, θ4, is the angle found in the top left of
△BCH. θ4 is not the full angle, ∠BCH, but is split by a
line that is perpendicular to CH. This angle was then found
using the bisector made earlier for θ1 as the height of the new
triangle is equal to the height of the bisector subtracted from
the total height of the bridge or h−

√
h2 − 63.52. The length

of the base of the new triangle is simply 1
2AH or 63.5 [mm].

This makes the final calculation of θ4 to be

arctan(
h−

√
h2 − 63.52

63.5
) (3)

The fifth angle, θ5, is the bottom left corner of △DIJ. A
bisector was made at ∠DIJ to find θ5 since the height of the
bisector is the same as the height of the bridge. The base of
the new triangle formed then is simply 1

2 IJ or 12.7 [mm]. This
makes the final calculation of θ5 to be

arctan(
h

12.7
) (4)

Method of Joints

Method of joints is a way to solve for unknown internal
reactionary forces acting within the members of a truss. As
previously stated, the method of joints requires a set of global
equations to be constructed. The global equations solve for
the reactionary forces at the pin and roller supports. Pin
supports allow a member to rotate but not translate in any
direction, while roller supports can rotate and translate along
the surface that the roller sits upon (MIT, 1995).

The equations used to solve for the reactionary forces were
based upon the assumption that everything is static, therefore
the summation of forces in the x axis y axis must equal 0 [N],
while the and moments about pin A must equal 0 [Nm]. The
positive x axis is towards the right, and the positive y axis
is upwards. In figure 1, joint A has a pin support; therefore,
joint A has reactionary forces acting in the positive x and
positive y direction. Joint G has a roller support; therefore,
it has a reactionary force acting in the y direction. The load
is assumed to be distributed evenly across joints H, I, J, and
K. The team completed all calculations with the total load
being 1112 [N], therefore the load at each joint is the total
load divided by 2 (number of total trusses) and 4 (number
of load carrying joints). The load resulted in 139 [N]. That
being said, the global free body diagram equations are as



listed below.

∑
Fx = RAx = 0[N ] (5)∑

Fy = RAy +RGy − 4L = 0[N ] (6)∑
MA = RGy(457.2) [mm]

− L(127 + 203.2 + 254 + 330.2) [mm] = 0 [N-m]
(7)

RAx= 0 [N]
RAy= 278.01 [N]
RGy= 278.01 [N]

Solving for the unknown reactionary forces in the members
was a repetitive process that utilized the equilibrium equations.
The equilibrium equations assume the summation of forces in
the x axis and y axis equal zero. It is important to understand
that when analyzing a joint, the magnitude of the internal
reactionary force is assumed to be towards the joint except
for the load, and reactionary forces caused by a roller or pin
support. Since the truss is symmetric, it can be assumed the
reactionary forces will be the same for the corresponding
members, therefore only the equilibrium equations at joint
A, B, C, D, H and I will be discussed. To solve for the
reactionary forces it was important to keep the number of
unknowns equal to or less than the number of equilibrium
equations.

All the equations will be written in reference to figure 1
to determine which members meet at the joints. A positive
reactionary force using the method of joints indicates the
member is in compression and a negative reactionary force
means the member is in tension.

Joint A has four reactionary forces. Two of those reactionary
forces are from the pin support. The other two reactionary
forces are due to the two members that connect there. Since
the force in member AB is angled, the equilibrium equations
must reflect this in the x and y components. The equilibrium
equations and reactionary force diagram at joint A are listed
below.

Fig. 2. Free body diagram at joint A.

∑
Fx = RAx −RAB cos(θ1)−RAH = 0[N ] (8)∑

Fy = RAy −RAB sin(θ1) = 0[N ] (9)

RAB= 321.02 [N]
RAH= -160.51 [N]

Moving onto joint B, there are three reactionary forces due
to the three members that connect there. Since all of these
forces are angled, the equilibrium equations must account
for the x and y components of all three members. The
equilibrium equations and reactionary force diagram at joint
B are listed below.

Fig. 3. Free body diagram at joint B.

∑
Fx = RAB cos(θ1)−RBC cos(θ4)−RBH cos(θ1) = 0[N ]

(10)∑
Fx = RAB sin(θ1)−RBC sin(θ4) +RBH sin(θ1) = 0[N ]

(11)
RBC= 287.82 [N]
RBH= -235 [N]

Continuing on to joint H, there are four reactionary forces
due to the four members that connect there and one load.
Forces in members AH, BH, and HI are angled, therefore it
is necessary to account for the x and y components when for-
mulating the equilibrium equations. The equilibrium equations
and reactionary force diagram at joint H are listed below.

∑
Fx = RAH −RHI +RBH cos(θ1) = 0[N ] (12)∑

FY = RBH sin(θ1) +RCH + L = 0[N ] (13)

RCH= 64.51 [N]
RHI= -278.01 [N]



Fig. 4. Free body diagram at joint H.

For joint C, there are four reactionary forces due to the
four members that connect there. The equilibrium equations
for members BC and CI must account for the x and y force
components since they are angled. The equilibrium equations
and reactionary force diagram at joint C are listed below.

Fig. 5. Free body diagram at joint C.∑
Fx = RBC cos(θ4)−RCI cos(θ2)−RCD = 0[N ] (14)∑
Fy = RBC sin(θ4) +RCI sin(θ2) +RCH = 0[N ] (15)

RCD= 361.42 [N]
RCI= -162.11 [N]

Joint I has four reactionary forces due to the four members
that connect there and one load. To account for the angled
nature of CI and DI, the calculations included the x and y
components of these forces. The equilibrium equations and
reactionary force diagram at joint I are listed below.

∑
Fx = RHI −RIJ +RCI cos(θ2)−RDI cos(θ5) = 0[N ]

(16)∑
Fy = RCI sin(θ2) +RDI sin(θ5) + L = 0[N ] (17)

RDI= 0 [N]
RIJ= -278.02 [N]

Fig. 6. Free body diagram at joint I.

Lastly, joint D has four reactionary forces due to the four
members that connect there. Due to the fact that members
DI and DJ are angled, the equilibrium equations must reflect
this by accounting for the x and y force components. The
equilibrium equations and reactionary force diagram at joint
D are listed below.

Fig. 7. Free body diagram at joint D.

∑
Fx = RCD −RDE +RDI cos(θ5)−RDJ cos(θ5) = 0[N ]

(18)∑
Fy = RDI sin(θ5) +RDJ sin(θ5) = 0[N ] (19)

RDJ= 0 [N]
RDE= 361.42 [N]

The remaining equations are written in a similar fashion,
the equations differ by the joint being analyzed, different
angles, different members of the truss, and global forces to
use if applicable. In total there were 22 equations (two per
joint). Matlab symbolics was utilized to solve the system
of equations. Like previously mentioned, the angles were
defined in terms of the height; therefore, they were casted
into Matlab the same way. The equations were put into
Matlab symbolics and an equation solver was used to find the
reactionary forces. The results are presented in the table below.



Member Result [N] Tension or Compression
AB 321.02 Compression
AH -160.51 Tension
BC 287.82 Compression
BH -235.00 Tension
CD 361.42 Compression
CH 64.51 Compression
CI -162.11 Tension
DE 361.42 Compression
DI 0.00 Compression
DJ 0.00 Compression
EF 287.82 Compression
EJ -162.11 Tension
EK 64.51 Compression
FG 321.02 Compression
FK -235.00 Tension
GK -160.51 Tension
HI -278.01 Tension
IJ -361.42 Tension
JK -278.01 Tension

Method of Sections
The method of sections is another way to solve for

unknown reactionary forces acting within members of a truss.
To verify the reactionary forces found from the method of
joints, the team utilized the method of sections. Both methods
use the same free body diagram; therefore, they have the same
three global free body diagram equations. Excluding the load
and reactionary forces caused by a roller or pin support, the
method of sections assumes the magnitude of the reactionary
force is pointed away from the cut of the member. When
making a section, all forces must be accounted for when
formulating the equilibrium equations. When making the cuts,
it is important that the cuts are straight lines through members
and not joints. The summation of forces in the x and y axis
and the moment about pin A must equal zero. This is because
the equilibrium equations assume that the body is static.
When making a section, all forces must be accounted for
when formulating the equilibrium equations. It is important to
note that there cannot be more than three unknowns at a time
for method of sections; however for the sake of simplicity,
the team decided to only have two unknowns. Therefore,
the employment of the moment equation per cut will not be
necessary.

Solving for the forces within a member using the method of
sections is a repetitive process. Since the truss is symmetric,
only cuts through the left side of the bridge will be discussed;
however, the process was repeated on the right side. A
negative reactionary force using the method of joints indicates
the member is in compression and a positive reactionary
force means the member is in tension.

The first cut was made through members AB and AH.
This section of the bridge has reactionary forces at pin A,
force AB, and force AH. Due to member AB being angled,
the equilibrium equations must account for the x and y force
components. The section diagram and equilibrium equation
for cut AB and AH are listed below.

Fig. 8. Free body diagram of cut AB and AH.

∑
Fx = RAx + FAH + FAB cos(θ1) = 0[N ] (20)∑

Fy = RAy + FAB sin(θ1) = 0[N ] (21)

FAB= -321.02 [N]
FAH= 160.51 [N]

For the section created through cutting of members AH,
BC, and BH, there are the reactionary forces at pin A, and
forces from AH, BC, and BH. Since the forces from members
BC and BH are angled, the x and y force components must
be included in the equilibrium equations. The section diagram
and the equilibrium equations for cut AH, BC, and BH are
listed below.

Fig. 9. Free body diagram of cut AH, BC, and BH.

∑
Fx = RAx + FAH + FBH cos(θ1) + FBC cos(θ4) = 0[N ]

(22)∑
Fy = RAy − FBH sin(θ1) + FBC sin(θ4) = 0[N ] (23)

FBC= -287.82 [N]
FBH= 235.00 [N]

The section created from the cut through members BC,
CH, and HI has a load, reactionary forces from pin A, and
forces from BC, CH, and HI. The forces from members BC,
and HI are angled therefore the proper x and y components
must be accounted for when constructing the equilibrium
equations. The section diagram and the equilibrium equations
for cut BC, CH, and HI are listed below.



Fig. 10. Free body diagram of cut BC, CH, and HI.

∑
Fx = RAx + FHI + FBC cos(θ4) = 0[N ] (24)∑

Fy = RAy + FBC sin(θ4) + FCH − L = 0[N ] (25)

FCH= -64.51 [N]
FHI= 278.01 [N]

For the section created from the cuts through members
CD, CI, and HI, there are the reactionary forces at pin A,
a load, and forces from members CD, CI, and HI. The
force from member CI is angled therefore the proper x
and y components must be accounted for when creating
the equilibrium equations. The section diagram and the
equilibrium equations for the cut CD, CI, and HI are listed
below.

Fig. 11. Free body diagram of cut CD, CI, and HI..

∑
Fx = RAx + FHI + FCD + FCI cos(θ2) = 0[N ] (26)∑

Fy = RAy − FCI sin(θ2)− L = 0[N ] (27)

FCD= -361.42 [N]
FCI= 162.12 [N]

Moving on to the section created by cuts through members
CD, DI, and IJ, there are the reactionary forces at pin A,

two loads and forces from members CD, DI, and IJ. The
force from member DI is angled therefore the proper x and
y components must be accounted for when constructing
the equilibrium equations. The section diagram and the
equilibrium equations for the cut CD, DI, and IJ are listed
below.

Fig. 12. Free body diagram of cut CD, DI, and IJ..

∑
Fx = RAx + FIJ + FCD + FDI cos(θ5) = 0[N ] (28)∑

Fy = RAy + FDI sin(θ5)− 2L = 0[N ] (29)

FDI= 0.00 [N]
FIJ= 361.42 [N]

Finally, the section created by the cut through members
DE, DJ, and IJ, there are the reactionary forces at pin A, two
loads, and forces from members DE, DJ, and IJ. The force in
member DJ is angled therefore the proper x and y components
must be accounted for when constructing the equilibrium
equations. The section diagram and the equilibrium equations
for the cut DE, DJ, and IJ are listed below.

Fig. 13. Free body diagram of cut DE, DJ, and IJ.

∑
Fx = RAx + FIJ + FDE + FDJ cos(θ5) = 0[N ] (30)∑

Fy = RAy + FDJ sin(θ5)− 2L = 0[N ] (31)



FDE= -361.41 [N]
FDJ= 0.00 [N]

The remaining equations were written in a similar manner,
the equations differ by the section being analyzed. In total
there were 19 equations and the results are presented in the
table below.

Member Result [N] Tension or Compression
AB -321.024 Compression
AH 160.510 Tension
BC -287.822 Compression
BH 235.004 Tension
CD -361.418 Compression
CH -64.513 Compression
CI 162.106 Tension
DE -361.418 Compression
DI 0 Compression
DJ 0 Compression
EF -287.822 Compression
EJ 162.106 Tension
EK -64.513 Compression
FG -321.024 Compression
FK 235.004 Tension
GK 160.510 Tension
HI 278.014 Tension
IJ 361.418 Tension
JK 278.014 Tension

After verifying the internal reactionary forces acting within
the members was correct, the team needed to determine
which members to rabbet. The team was required to use
rabbet joints because of the length of the bolt. The longest
bolt length allowed was 38.1 [mm]. The dimensions of
the balsa wood was 9.525 [mm] x 9.525 [mm], therefore
four joints at a member would exceed the bolt length.
Only two out of the four members got rabbeted. To decide
which members to rabbet, the team analyzed the internal
reactionary forces. If a member was in compression, then
the team decided to use rabbet joints. These members were
rabbeted because the compressive member pushes towards
the bolt. Members BC, CD, DE, and EF got rabbeted together.

Stresses

Before the discussion of stresses begins, it is important to
know the three different types of members within the truss.
The members in the main beam are AH, HI, IJ, JK, GK.
Rabbeted members are BC, CD, DE, and EF. Un-rabbeted
members are AB, BH, CH, CI, DI, DJ, EJ, EK, FK, and FG.
The type of member impacts the stress calculations because
the members have different dimensions.

There are four different types of stress the bridge
experiences: normal, shear, shearing, and bearing stress.
Normal, shear, and bearing stresses are used for analyzing the
stresses within a member while shearing stress is for analyzing
the stress within the cross beams. According to an article
published by Boston University Mechanical Engineering,
normal stress is “When a force acts perpendicular to the

surface of an object” (Boston University). The equation is
listed below.

σ =
R

A
(32)

R represents the internal reactionary force of the member being
analyzed. A is the cross sectional area of the member being
analyzed. Again, there are three different cross sectional areas
and these values are presented in the table below.

Main Beam Rabbeted Member Not Cut Member
181.45125 [mm2] 45.36 [mm2] 90.73 [mm2]

A design constraint was ensuring the normal stress for
members in tension remained under 19.9 [MPa] while
members in compression remained under 12.1 [MPa]. Based
on the same article published by Boston University, shear
stress is “When a force acts parallel to the surface of an
object, it exerts a shear stress” (Boston University). The
equation is listed below.

τ =
R

2A
=

σ

2
(33)

Since R and A are representative of the same variables as the
normal stress, the shear stress is simply half of the normal
stress. The shear stress needed to remain under 6.05 [MPa].
Bearing stress is defined as ”The stresses developed when
two elastic bodies are forced together” according to an article
published by the Engineering Library (Engineering Library).
The equation is listed below.

σb =
R

td
(34)

Again, R represents the internal reactionary force of the
member being analyzed. d is the diameter of the bolt and t
is the thickness of the member. The diameter of the bolt is
constant, at 4.1656 [mm]. The bearing stress should remain
under 12.1 [MPa]. It is important to note, there are two
different thicknesses, these values are presented in the table
below.

Main Beam Rabbeted Member Not Cut Member
9.53 [mm] 4.76 [mm] 9.53 [mm]

With that being said, the results for normal, shear, and
bearing stress are presented below in the table.



Member Normal [MPa] Shear [MPa] Bearing [MPa]
AB 3.53 1.765 8.09
AH 0.884 0.442 4.045
BC 6.345 3.1725 14.508
BH 2.59 1.295 5.92
CD 7.967 3.9835 18.217
CH 0.71 0.355 1.626
CI 1.787 0.8935 4.086
DE 7.967 3.9835 18.217
DI 0 0 0
DJ 0 0 0
EF 6.345 3.1725 14.508
EJ 1.787 0.8935 4.086
EK 0.71 0.355 1.626
FG 3.53 1.765 8.09
FK 2.59 1.295 5.92
HI 1.532 0.766 7.01
IJ 1.992 0.996 9.109
JK 1.532 0.766 7.01
KG 0.884 0.442 4.045

Although the bearing stress for members BC, CD, DE,
and EF exceeded the constraint, the team proceeded with the
design out of curiosity if the math would perfectly translate
to the real world (It did not). Lastly, shearing stress acts
co-planar to the cross section of the material (Xometry). In
this bridge this stress acts in the cross beams. The equation
is listed below.

τing =
Z

A
(35)

Z is representative of the total load divided by 2 (number of
trusses) and 6 (number of crossbeams). Therefore Z is 92.67
[N], again this number was found with the assumption that
the total load is 1112 [N]. A is representative of the cross
sectional area of the cross beams, which is conveniently
the same as the cross sectional area of a not cut member.
According to an article published by the Massachusetts
Institute of Technology, the maximum shearing stress for
balsa wood is 5 [MPa] (MIT Libraries, 2015). The shearing
stress was found to be 1.02 [MPa].

Optimization

After testing the first bridge design, which failed due to
shearing, the team decided to calculate the exact number
of cross members needed to carry the expected load of the
bridge. The Matlab code that was created to calculate the
internal reactionary forces for the method of joints was used
as the base of the program to calculate the maximum weight
the bridge could hold. The stresses of each member were then
calculated at the bottom of this code and the code was run in
a loop, increasing the weight by approximately 22 [N] with
each pass through. Additionally, with each run, the stresses
were compared to the maximum stress the balsa wood could
withstand before breaking. The loop would then break when
the code found that one of the stresses in the bridge was
equal to or greater than the maximum stress. It’s important to
note that bearing stress already started above the maximum
allowable stress; therefore, it was not included in the loop.
This decision was ultimately made given off the previous test

run in which, with the weight held, the bearing stress should
have doubled that of which was allowable and yet the pieces
still did not fracture. Through this method, it was found the
initial design would be expected to hold approximately 1668
[N]. This weight was then plugged back into the shearing
stress calculations and it was found that the number of cross
members would need to be at least eight.

Additionally, in an attempt to evenly distribute the load
across members AB, BC, and CD, a Matlab script was made
to optimize the angles based on the height of the bridge. Due
to the symmetry of the truss, it is expected that members
DE, EF, and FG would react the same as their corresponding
members. This was done by maintaining the same distance
between the attachments on the base of the truss and making
the angles variable based on the height of the bridge.

After examining the geometry of the bridge, it was decided
that the code should start with a height of 65.0875 [mm] in
order to avoid having the code attempt to run geometries that
can’t exist in real life. Specifically, in reference to equation
one, if a height of 63.5 [mm] were to be run, θ1 would be 0.
Therefore, implying the members would have to be parallel to
the base and would no longer form a triangle, but a line. The
code increased the height with every pass by 1.5875 [mm]
up to 254 [mm]. The graph of the force on the members vs
the height is shown in the figure below. This graph was then

Fig. 14. Forces on 3 main members, AB - red, BC - green, CD - blue .

analyzed to see if there was ever a point in which all the
forces were exactly the same. Since there was no such point,
the next best thing was to find the point in which the forces
were the closest together. It was then determined that the
height where the forces were the closest was 73.025 [mm].
Once the height and angles were determined, they were used
to calculate the distance of the holes. These distances were
then used to create the second bridge.

Performance Index (PI)

To calculate the PI, the load is divided by the weight
of the bridge plus the cost. The cost is composed of the



cost of materials in addition to the environmental cost. The
total environmental cost was $0.7014 while the cost of the
materials was $15.5586 total. One 9.525 [mm] x 19.05 [mm]
x 1219.2 mm beam was used, which had a material cost of
$2.40 and an environmental cost of $0.0672 for a total cost
of $2.4672. Approximately, four 9.525 [mm] x 9.525 [mm]
x 1219.2 [mm] beams were used, which had a material cost
of $7.6228 and an environmental cost of $0.1334, for a total
cost of $7.7562. The bridge used four 25.4 [mm] bolts which
had a material cost of $0.36 and an environmental cost of
$0.0476, for a total cost of $0.4076. In addition, eighteen
38.1 [mm] bolts were used which had a material cost of
$2.52 and an environmental cost of $0.2952, for a total cost
of $2.8152. Forty-four total washers were used, which had a
material cost of $1.76 and an environmental cost of $0.0484,
for a total cost of $1.8084. Finally, there were twenty-two
nuts that had a material cost of $0.88 and an environmental
cost of $0.1254, for a total cost of $1.0054. Together the
costs add up to a total of approximately $16.26. Referenced
below is the total cost breakdown for each millimeter of
material provided by the project description.

Item Item Cost [$/Item] CO2 Cost [$/Item]
9.525 x 19.05 [mm2] 0.001969 0.000055
9.525 x 9.525 [mm2] 0.00157 0.000028

No 8 Washer 0.04 0.0011
8/32 nut 0.04 0.0057

25.4 [mm] 8/32 bolt 0.09 0.0119
38.1 [mm] 8/32 blot 0.14 0.0164

The bridge ultimately weighed 2.2736 [N] and held a
total load of 1760.16 [N]. With this in mind, the final PI
calculation ended up being 1760.16

2.2736x16.26 or approximately 47.6.

RESULTS AND DISCUSSION

The first iteration of the bridge had 6 cross members and
held 1272 [N] with a PI of 35.9 [1/$]. The initial hypothesis
was that the rabbet joints would be the first to break due to
bearing stress. This hypothesis was drawn from comparing
the stress calculations to the maximum allowable stress.
However, after testing it was found that the cross members
of the bridge broke first. This implied the bridge broke due
to shearing stress rather than bearing stress. To improve upon
the initial design, two different plans were devised.

The first plan was to evenly distribute the force on the
bridge as much as possible by optimizing the angles of
the bridge based on the height of the truss. However, by
distributing the load evenly across all members, the internal
reactionary forces were increased on the rabbet joints. This
resulted in an increase of stress on the rabbet joints. This
resulted in the failure of the bridge in member AB at a
much lower force than the initial bridge design. This second
bridge design decreased the height of the bridge by 50 [mm],
had 8 cross members, held 787 [N], and had a PI of 34.2 [1/$].

The other plan was to calculate the maximum weight
the bridge could hold based on the stresses. The maximum
weight was then used to calculate the necessary number
of cross members for the first truss design. The theoretical
maximum weight was calculated to be 1668 [N] and the
minimum number of cross members needed was calculated
to be eight. This theory was tested by re-using the truss from
the first iteration and gluing on new cross members. With
eight cross members the bridge was able to withstand 1414.5
[N] and have a PI of 37.5 [1/$]. Once again, the main point
of failure of the bridge was the shearing stress. Therefore,
ten cross members were used in the final design.

In the final test, the main beam split at joint K. Additionally,
member FK broke due to bearing at joint K. All the cross
members stayed intact for the final test. The final bridge held a
force of 1760.16 [N] with a PI of 47.6 [1/$] and cost 16.26 [$].

CONCLUSION

The Professor assigned his Statics and Mechanics of
Materials I class with the challenge of designing a balsa
wood bridge capable of supporting a load of 1001 [N] and a
minimum PI of 30. After researching different truss designs,
the team decided to draw inspiration from the Warren and
Parker truss for the final design. To determine the internal
reactionary forces acting within the members of the truss,
the team leveraged symbolics in Matlab to solve the system
of equations created from the method of joints. The method
of sections was used to validate the forces found from the
method of joints. While iterating the truss design, Matlab
was utilized to optimize the number of cross beams needed
and the angles used within the truss. After numerous tests,
the final bridge design held a load of 1760.16 [N] had a PI
of 47.6 [1/$] and cost 16.26 [$].
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