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OBJECTIVE

The objective of the project is to design a bi-metallic strip that is 3 [in] in length with a fixed end. The bimetallic strip
designed is constrained such that the deflection is less than 0.05 [in] when there is a change of temperature of 50°F.

NOMENCLATURE

Symbols Definition Units
α Coefficient of Thermal Expansion [-]
A Cross Sectional Area [in2]
h Height [in]
E Elastic Modulus [Pa]
L Length [in]
T Temperature [°C]
y Allowable Deflection [in]
∆x Change in length [in]
F Force [N]
n Ratio of Elastic Moduli [-]
I Second Moment of Area [in4]

TABLE I
SYMBOLIC DEFINITIONS

BACKGROUND

Bi-metallic strips are devices that deflect due to changes in temperature. Typically used in thermometers and other temperature
sensitive measurement devices, bi-metallic strips are made up of 2 different metals attached to each other lengthwise. When the
strip experiences a change in temperature, each individual strip will expand accordingly to the coefficient of thermal expansion.
Due to the adhesive firmly attaching the two strips together, the strips must remain the same length. Thus, one strip will be
in tension and the other in compression causing a couple to form at the end of bi-metallic strip resulting in an observed
deflection. As the temperature change increases, the thermal deformation, and the couple will increase resulting in a more
noticeable deflection. This process can be seen below in figure 1.

*All correspondence regarding the paper should be addressed to Kalinda Wagner



Fig. 1. Mechanics of a Bi-Metallic Strip

METHODOLOGY

In this project, the heights of each strip, the base, and the material are all variable. In order to complete the objective, these
parameters must be carefully selected such that the bi-metallic strip deflects less than 0.05 [in] due to the 50°F temperature
change. This was accomplished by deriving an equation that related all of these parameters to the beam’s deflection.

To properly analyze the deflection, the bi-metallic strip was represented as a cantilevered beam with a moment at the end.
This is referenced in Case 4 which states that a cantilevered beam with a moment located on the opposing end of the support
can be represented by:

y =
ML2

2EI
(1)

The steps and derivation for each component in this equation are outlined below.

Assumptions

Before any analysis was completed, a list of assumptions was made to make the analysis simpler. They are listed below:
1) The Coefficient of Thermal Expansion for material 1 is greater than that of material 2. ( α1 > α2 )
2) The heights of both materials are the same. ( h1 = h2 = h )

Moment

The first step in this analysis took into account the different lengths due to thermal expansion. The general thermal expansion
equation is modeled below as:

∆x = αL∆T (2)

Using this equation, the change in lengths for each metal is modeled such that:

∆x1 = α1L∆T (3)

∆x2 = α2L∆T (4)

For this analysis, the difference between the thermal expansion of the metals is more important than the magnitude of the
thermal expansion. Therefore, the difference between the thermal expansions is defined as ∆x such that:

∆x = ∆x1 −∆x2 = L∆T (α1 − α2) (5)



Deflection Equations

In a bi-metallic strip the two strips are the same length despite having two different metals with two different rates of
expansion. This is only possible if there is an equal and opposite force acting on each strip such that one strip is compressed
and the other strip under tension. This can be modeled by the general deflection equation which is shown below:

δ =
FL

EA
(6)

F is the reaction force. L is the length of the strip. E is the elastic modulus and A is the cross-sectional area.
1) strip 1: As stated in the assumptions, α1 > α2, therefore, strip 1 will expand more than strip 2. Thus, strip 1 will need

to be compressed or have a negative deflection. From inspection:

Fig. 2. Internal Reaction Force of Strip 1

ΣFx = Fw − F1 = 0;F1 = Fw (7)

2) Strip 2: As stated in the assumptions, α1 > α2, therefore, strip 2 will expand less than strip 1. Thus, strip 2 will be in
tension. From inspection:

Fig. 3. Internal Reaction Force of Strip 2

ΣFx = −Fw + F2 = 0;F2 = Fw (8)

Combining these together, it can be said that

Fw = F1 = F2 = F (9)

As stated earlier, the two strips are the same length. Thus, the total expansion due to thermal expansion and axial loading
must be the same for both strip 1 and strip 2. This can be represented below as:

∆x1 − δ1 = ∆x2 + δ2 (10)

Which can then be further simplified into:



∆x =
FL

E2A2
+

FL

E1A1
(11)

And solving for force will yield:

F =
bh∆T (α1 − α2)(E2 + E1)

E1E2
(12)

Moment and Couple

The force calculated above generates a couple at the end of strip as there are two opposite acting forces separated by a
distance. Given the assumption that the two strips are the same height, h, then the distance between the two forces acting on
the centroid of the strips can be calculated as:

x = y1 − y2 =
3h

2
− h

2
= h (13)

The couple can then be calculated as:

M = Fx =
bh∆T (α1 − α2)(E2 + E1)

E1E2
(h) =

bh2∆T (α1 − α2)(E2 + E1)

E1E2
(14)

At this point in the analysis, the strip can be modeled as the diagram shown below:

Fig. 4. Couple

Transformed Section and Finding The Second Moment of Area

In order to derive the second moment of area, the bi-metallic strip must be analyzed as if it were a single material. In this
analysis, the strip was converted into material 2 as seen in the diagram below:

Fig. 5. Transformed Section

In the transformed section, yc must be found, which includes yc1 and yc2 being the centroid locations of each material,
respectively. In addition, Ac1 and Ac2 are the areas of each material. It is important to note that n = E1

E2
.

yc1 =
3

2
h;Ac1 = bnh (15)

yc2 =
1

2
h;Ac2 = bh (16)



Now that all of the necessary components for yc are solved, the general equation can be found below:

yc =
yc1Ac1 + yc2Ac2

Ac1 +Ac2
=

h(3n+ 1)

2(1 + n)
(17)

Since yc is derived, the equations for the second moment of areas must be solved. Assuming that section 1 is the section
that is being transformed, the equations are modeled below:

I1 =
1

12
(bn)h3 + (yc1 − yc)

2Ac1 =
h3bn

12
+

h3bn

(1 + n)2
(18)

I2 =
1

12
bh3 + (yc − yc2)

2Ac2 =
h3b

12
+

h3bn2

(1 + n)2
(19)

After these unknowns are solved for, the total Second Moment of Area is:

Itot = I1 + I2 = (bh3)
n2 + 14n+ 1

12(1 + n)
(20)

Combining Equations

Using the derived moment and second moment of area equations, the final allowable deflection equation is solved for:

y =
ML2

2EI
=

6nL2∆T (α1 − α2)

h(n2 + 14n+ 1)
(21)

Matlab Code

Following the final derivation of the maximum deflection equation, a Matlab code is utilized to test a combination of
different metals. The list of metals to analyze was reduced to brass, copper and steel due to their accessibility. To begin, a list
of constants (i.e. elastic moduli, and coefficient of thermal expansion) was constructed in reference to articles published by
Ezlok, AmesWeb, and the Engineering Tool Box. Those values are listed in the table below.

Material Elastic Modulus ∗106 [psi] Coefficient of Thermal Expansion ∗10−6[1/F]
Brass 14.1 10.00

Copper 16.7 8.89
Steel 28.00 9.61

There was a possibility of 6 different configurations due to the three different materials. The first combination of materials
to be tested is brass and copper. When using the aforementioned method of analysis in which a section is transformed, either
material can be transformed, which results in the two sub-cases of: brass transformed to an entirely copper section, and copper
being transformed to an entirely brass section. Using assumption 1 helps eliminate a sub-case. It is important to note the same
methodology was applied to the remaining 2 main cases (i.e. brass and steel, and copper and steel).

With that being said, equation 21 can be used to solve for the maximum deflection. Within the Matlab script, the height, h,
is defined as an array ranging from 0 to 1 [in] being incremented by 0.01 [in]. Three separate plots were made to represent
the viable cases. These plots can be seen in the Results and Discussion section. The plots show the Difference in height vs.
the Deflection.



Fig. 6. Different Heights vs. Deflection for Brass and Copper

Fig. 7. Different Heights vs. Deflection for Brass and Steel

Fig. 8. Different Heights vs. Deflection for Copper and Steel



FINAL RESULTS

As shown in the graphs above, the three cases have similar outcomes when discussing the amount of deflection. As the
height of each strip increases, the deflection in each bimetallic strip decreases exponentially. On the contrary, this means as
the height of each strip decreases, the deflection will increase exponentially.

While a 2 [in] thick bimetallic strip would theoretically give the best outcome, as it provides the least deflection, this is
highly unlikely and unusable in the real world. Due to this fact, the final choice of metals will be based on any thickness less
than 0.5 [in]. Narrowing further, a common thickness for each strip is 0.02 [in].

As the height of the strip approaches zero, it is apparent from the graphs that the bimatallic strip made of Brass and Steel
deflects the least. Using the previously determined common thickness, 0.02[in], the brass and steel will both be 0.02 [in] thick
with a maximum deflection of 0.003 [in].

Although in the calculations, the width of the base did not matter, for practicality reasons, the width will be 0.5 [in].
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