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ABSTRACT
As students taking Intro to Thermodynamics, the Professor

instructed the class to maximize the thermal efficiency of
a traditional steam driven Rankine Cycle. To optimize the
system, the pumps and turbines were initially assumed to be
isentropic. After defining some state properties, a Matlab script
and XSteam were used to find the remaining properties. The
1st and 2nd law of thermodynamics were utilized to analyze
the system. The equations got embedded into the script and
were used to iterate through different possibilities of the cycle.
The efficiency of the pumps and turbines were used to find
the real efficiency (i.e. initial assumption regarding pumps and
turbines is discarded). The iteration in which the system was
optimized had a real efficiency of 27.20 % when P2 = 4.11
[bar] , P3 = 3.30 [bar] , and P5 = 0.88 [bar].

NOMENCLATURE

g Gravity 9.81 [ms2 ]
h Specific Enthalpy [ kJ

Kg ]
P Pressure [bar]
q Specific Heat[ kJ

Kg ]
s Specific Entropy [ kJ

Kg−K ]
T Temperature [°C]
u Energy of the System kJ

kg
V Velocity [ms ]
w Specific Work [ kJ

Kg ]
x Quality [-]
y Mass Fraction
z Height [m]
Special Characters
η Efficiency [-]
σ Entropy Generated [ kJ

Kg−K ]∑
Summation

Acronyms / Subscripts
B Boiler
C.F.H. Closed Feedwater Heater
C.o.E Conservation of Energy
E.R.B. Entropy Rate Balance
H.P. High Pressure
HEX Heat Exchanger
L.P. Low Pressure
O.F.H. Open Feedwater Heater

*All correspondence regarding the paper should be addressed to Kalinda
Wagner

INTRODUCTION
Thermal efficiency is important to designing power plants.

It is used to ensure that the system designed can produce the
most energy possible with minimal input while staying within
the confines of reality. In a publication by Boston University,
it states the thermal efficiency of a thermal power plant went
from 4% to 439% efficient. This is due to a reduction of heat
loss in the boiler, turbine, and engine of power plants. The
increase in efficiency has a large effect on lowering cost of
electricity and minimizing the use of natural resources [1].
Hence why it is vital to understand and optimize thermal
efficiency.

One part of understanding thermal efficiency is understand-
ing the Carnot Cycle. Referencing a Youtube video published
by the channel Matt Barry, ”The Carnot Cycle is the most
efficient heat engine operating between any two temperature
reservoirs” [2]. A derivation of the Carnot Cycle, is the
Rankine Cycle. An article issued by the University of Calgary
states, the Rankine Cycle converts heat into mechanical energy.
This is achieved through heating water to produce steam and
using the steam to operate turbines which generate work. It is
often used in nuclear reactors [3]. Since the Carnot Cycle is
not attainable, the Rankine Cycle is a more realistic way of
achieving as close to Carnot as possible. Therefore the thermal
efficiency of the Rankine Cycle can not exceed that of the
Carnot Cycle.

METHODOLOGY
In order to optimize the Rankine cycle, the state properties

were identified, initially assuming the pumps and turbines
are isentropic. A Matlab script and XSteam were utilized to
find values for the remaining state properties. Conservation
of energy (C.o.E) and entropy rate balance (E.R.B.) equations
were formulated for each component, which were coded into
the Matlab script. Lastly, the initial assumption about the
pumps and turbines is discarded to account for irreversibilities
which increase entropy and enthalpy in any process.

Defining State Properties
The proposed cycle is shown below alongside a list of limits

and requirements that were given and used to determine state
properties. Each state must have two independent properties
defined in order to derive the remaining three. It is important
to note that water is the working fluid.



Fig. 1. Combined Cycle Schematic

1) Maximum high-pressure(H.P.) turbine inlet conditions:
P = 8.0 [MPa], T = 480°C;

2) Minimum turbine quality at outlet is 90 %;
3) Reheat temperature may not exceed 440°C;
4) Substances entering pumps must be saturated liquid or

a compressed / subcooled liquid;
5) The isentropic efficiency of the turbines is 85%;
6) The isentropic efficiency of the pumps is 90%;
7) Heat transfer in all heat exchangers / condensers requires

a minimum of 15°C temperature difference between
working fluids;

8) The ambient temperature that the condenser is exposed
to is 25°C;

The first constraint provides the state properties at state 1.
The pressure is 8.0 [MPa], or 80.0 [bar], and a temperature of
480°C. The second constraint provided the minimum quality
for states 2, 3, 5, and 6. The quality of any turbine outlet
must be greater than 90% or x ≥ 0.9 [-]. The third constraint
limits the reheat temperature coming out of the boiler to be
a maximum of 440°C. This was used as the temperature
at state 4 for the purposes of maximizing efficiency of the
system. The fourth constraint defines the quality at states 7
and 9 to be x = 0.0 [-]. Constraint five and six will be used
as boundary conditions and discussed later on. The seventh
constraint specifies the minimum difference in temperature
between interacting fluids. This is because there has to be
a temperature difference in order for the initial substance to
be cooled. This implies the temperature at state 11 has to be
15°C less than the temperature at state 2 (T11 = T2 - 15 °C). In
addition, the boundary temperature for the boiler is found to be
495°C, 15°C greater than the maximum heat output. Constraint
eight, states the ambient temperature is 25°C, this gives the
temperature at state 7 and the temperature boundary for the
heat exchanger (HEX) as 40°C, 15°C greater than ambient,
using constraints seven and eight together. Like previously
mentioned, the pumps and turbines are initially assumed to be
isentropic processes. The trap is isenthalpic, therefore the inlet
enthalpy is equivalent to the outlet enthalpy (i.e. h12 = h13).
Additionally, it is recognized that the closed-feedwater heater

(C.F.H), open-feedwater heater (O.F.H), HEX and boiler are
isobaric processes. Therefore the inlet pressure is equivalent
to outlet pressure. This can be visualized in the figure below.

Fig. 2. Pressure Schematic

When analyzing the mass flow rates, if there is a junction in
the path (i.e. multiple outlets from one system component) the
mass flow will split. This causes a mass fraction. An example
of this can be seen at each turbine. Additionally, when there
are multiple inlets going into one component of the system,
the mass flows are added together. An example of this can be
seen at the O.F.H. All of this is represented in the diagram
below.

Fig. 3. Mass Flow Schematic

Applying the 1st Law; Conservation of Energy

The base equation for the C.o.E. is shown below

u = q − w +
∑
i

(hi +
(Vi)

2

2
+ g ∗ zi)

−
∑
j

(hj +
(Vj)

2

2
+ g ∗ zj) (1)



The 1st law equation states, energy of the system is equivalent
to the specific heat subtracted from specific work plus the spe-
cific energy exiting subtracted from specific energy entering
the system. Note the energy entering or exiting is comprised
of three components, specific internal energy, specific kinetic
energy and specific potential energy, respectively.

To reduce equation 1, note that kinetic energy and potential
energy do not contribute to the energy of the system. Since
the overall system is steady state, the energy of the system
is 0 [kJkg ]. Again, all turbines and pumps are assumed to be
isentropic, therefore the specific heat is equivalent to zero. In
addition, the specific heat at the C.F.H., O.F.H. and the trap
are assumed to be 0 [kJkg ] because they are adiabatic. For the
isobaric components (i.e. Boiler, C.F.H., HEX, and O.F.H.),
the specific work is assumed to be 0 [kJkg ] as well as the trap.
The reduced C.o.E. equations for each component are listed
below. Notice the equation at the O.F.H. and the C.F.H. provide
definitions for the mass flow rates.
H.P. turbine 1:

wHP−t1 = h1 − h2 (2)

H.P. turbine 2:

wHP−t2 = (1− y) ∗ (h2 − h3) (3)

Boiler:

qB = (h1 − h11)− (1− y) ∗ (h3 − h4) (4)

L.P. turbine 1:

wLP−t1 = (1− y) ∗ (h4 − h5) (5)

L.P. turbine 2:

wLP−t2 = (1− y − y
′
) ∗ (h5 − h6) (6)

HEX:

qHEX = (1− y − y
′
) ∗ (h7 − h6) (7)

L.P. pump:

wLP−p = (1− y − y
′
) ∗ (h7 − h8) (8)

O.F.H.:

y
′
=

y ∗ (h3 − h8) + (h8 − h9)

h8 − h5
(9)

H.P. pump:

wHP−p = h9 − h10 (10)

C.F.H.:

y =
h11 − h10

h2 − h12
(11)

Trap:

h12 = h13 (12)

Applying the 2nd Law; Entropy Rate Balance

The base equation for E.R.B. is shown below

∆s =
∑ q

Tb
+ σ +

∑
i

si −
∑
j

sj (13)

The 2nd law equation states. the change of specific entropy
is equivalent to the summation of specific heat divided by the
boundary temperature added to the specific entropy generated
and the specific entropy entering minus the specific entropy
exiting.

To reduce equation 13, note the pumps and turbines are
still assumed to be isentropic, therefore the specific heat and
specific entropy generated are equivalent to zero. In addition,
the specific heat at the C.F.H., O.F.H. and the trap are assumed
to be 0 [kJkg ] because they are adiabatic. Intuitively, the system
is optimized when the change in specific entropy is equivalent
to 0 [kJkg ]. The reduced E.R.B. equations for each component
are listed below. A majority of the equations serve as a
mathematical proof for the state properties, since they were
initially defined by intuition. For the remaining equations, it
is important to note, the specific entropy generated can not be
less than zero.
H.P. turbine 1:

s1 = s2 (14)

H.P. turbine 2:
s2 = s3 (15)

Boiler:

σB =
−qB
TB

+ (s1 − s11) + (1− y) ∗ (s4 − s3) (16)

L.P. turbine 1:
s4 = s5 (17)

L.P. turbine 2:
s5 = s6 (18)

HEX:

σHEX =
−qHEX

THEX
+ (1− y − y

′
) ∗ (s7 − s6) (19)

L.P. pump:
s7 = s8 (20)

O.F.H.:

σOFH = s9 − y ∗ s13 − s8 ∗ (1− y − y
′
)− y

′
∗ s5 (21)

H.P. pump:
s9 = s10 (22)

C.F.H.:
σCFH =

s11 − s10
y ∗ (s2 − s12)

(23)

Trap:
σTrap = y ∗ (s13 − s12) (24)



Efficiency
The equation for the overall efficiency of the Rankine cycle

is shown below.

η =

∑
wturbines −

∑
wpumps

qB
(25)

Equations 2,3,5 and 6 were utilized to find the total specific
work of the turbines. Similarly, equations 8 and 10 were
utilized to find the total specific work of the pumps. The
specific heat of the boiler is equation 4.

Since thus far the values for enthalpies were all assumed to
be isentropic, another set of equations was created to calculate
the real enthalpies for the turbines and the pumps. This was
done by applying the general equations of

ηturbine =
hi − hf

hi − hfs
(26)

ηpump =
hi − hfs

hi − hf
(27)

to every pump and turbine. Where ηturbine and ηpump were
given in the project description, through constraints five and
six, as 0.85 and 0.90 respectively. To find the real specific
entropy the variable hf was solved for. At each state, where a
pump or turbine was involved, the ideal specific entropy and
real specific entropy were found.

The real efficiency should be less than the ideal efficiency
which is less than the carnot efficiency. The carnot efficiency
utilizes temperature boundaries and the equation is shown
below.

ηCarnot = 1− TL

TH
(28)

TL is the lowest temperature of the system, which in this
case is the ambient temperature of 25°C or 298.15 K. TH

is the highest temperature of the system, which is boundary
temperature of the boiler, 495°C or 768.15 K. To calculate
Carnot Efficiency, the units for temperature must be in Kelvins.

Matlab
Using the known values and the relations outlined above,

a Matlab script was written to find the optimal pressures
of the system. Enough information was given in the project
information, that all of the unknown values could be solved for
using XSteam. The first step was simply defining the different
state properties using known values and relations within the
Matlab script. These values were stored in arrays. Since a
general range of the quality at each state was known, a check
using the qualities was made to ensure that there were no
errors in the code. Once it was decided that everything was
running correctly, the quality checks were commented out.
After all of the table values were accounted for, the C.o.E.
equations and E.R.B. equations were coded into the script.
The mass fraction values and the σs were created as matrices
in order to verify legitimacy (i.e. σ ≥ 0.0, etc.). Additionally, a
filter was added to ensure valid values were making it through
the program. In doing so, the entropy generated, σ ≥ 0, the
mass fractions were > 0, the pressures were descending in

value P2 > P3 > P5, and real efficiency (η) was < Carnot
efficiency. Since the pressures at state 2,3, and 5 are unknown,
those will be the pressures that are iterated through. The
pressures were bounded by the saturated pressure at state 7
and 80 [bar] as these are the minimum and maximum pressure
values in the system. The code runs through with 100 values
for each pressure variable. Implying, it would run a total of
1003 or 1,000,000 iterations. After the code ran through all
1,000,000 possibilities, the largest η out of the data-set was
found along with its position. The position was found in order
to find the pressures. Like previously mentioned, the pumps
and turbines were assumed to be isentropic, however this is
not the case and the real enthalpy values were accounted for.
The code for C.o.E. and E.R.B. was copy-pasted and variable
names adjusted so that one set calculated the real efficiency
and the other calculated the ideal efficiency. The code was
then ran another 1,000,000 times and the final values were
found.

RESULTS AND DISCUSSION

The table below is tabulated with the real values (i.e.
using the isentropic efficiency to find specific enthalpy). A
separate Matlab script was made to run through the optimized
iteration, which provided the values below.

State P [bar] T [°C] x [-] h [kJkg ] s [ kJ
kg−K ]

1 80.00 480.00 Superheated 3349.5 6.66
2 4.11 144.60 0.96 2750.9 6.66
3 3.30 136.84 0.94 2628.6 6.66
4 3.30 440.00 Superheated 3358.8 8.11
5 0.88 254.52 Superheated 3040.1 8.11
6 0.074 40.00 0.98 2604.9 8.11
7 0.074 40.00 0.0 167.5 0.57
8 0.88 40.00 Subcooled 167.6 0.57
9 0.88 96.11 0.0 402.7 1.26
10 80.00 96.63 Subcooled 62.6 1.26
11 80.00 129.60 Subcooled 549.9 1.62
12 4.11 144.60 0.0 609.0 1.79
13 0.88 96.11 0.09 609.0 1.82

The final values for efficiencies were found as 31.08 %
at P2 = 4.11 [bar] , P3 = 3.30 [bar] , and P5 = 0.88 [bar]
for the the ideal and 27.20 % at P2 = 4.11 [bar] , P3 = 3.30
[bar] , and P5 = 0.88 [bar] for the real which is compared to
the Carnot Efficiency of 61.12 %.

CONCLUSION

The professor assigned his Intro to Thermodynamics class
with the challenge of optimizing the thermal efficiency of a
traditional steam driven Rankine Cycle. Initially, the pumps
and turbines were assumed to be isentropic. This was done to
define some of the state properties. The remaining properties
were found by utilizing Matlab and XSteam. To formulate
equations that analyze the system, the 1st and 2nd law of
thermodynamics were utilized. These equations got integrated
into the Matlab script, allowing for iterations through different
possibilities of the cycle. The initial assumption regarding



pumps and turbines is disregarded and the isentropic effi-
ciencies were used to find the real thermal efficiency. After
numberous trials and errors, the iteration in which the system
was optimized had an efficiency of 27.20 % when P2 = 4.11
[bar] , P3 = 3.30 [bar] , and P5 = 0.88 [bar].
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